Division 27. Communications

27 00 00. Communications

27 05 00. Common Work Results for Communications

27 05 05. General Requirements for Communications

1. Coax shall be used only on A/V.

2. Carefully coordinate phone systems with campus. Make sure telephone entry room is adequately sized and ventilated for equipment, including reasonable future growth. The UW-Madison Division of Information Technology (DoIT) is responsible for scheduling the interface with AT&T at the demarcation point.

3. The following color scheme for cable jackets shall be followed:
 3.1. Blue – data non plenum
 3.2. White – voice non plenum
 3.3. Pink – data, plenum
 3.4. Purple or Violet – voice, plenum

4. The following color schemes for inside plant (ISP) fiber cable jackets shall be followed:
 4.1. Yellow – single mode
 4.2. Orange – multi-mode 62.5 micron data (not typically installed. Consult DoIT for recommendations) (No longer used on Campus)
 4.3. Aqua – multi-mode 50 micron (not typically installed. Consult DoIT for recommendations) (No longer used on Campus)

5. Flush mounted voice/data jacks shall be specified for wall installation in lieu of angle mounted voice/data jacks.

6. Voice/data jacks shall have removable dust covers installed during construction.

7. Areas of rescue assistance (ARA) need to have communication devices connected to the building’s firefighter fire alarm control panel (FACP) to meet code. The devices are tied to the FACP and reported via Metasys. Review the campus ADA coordinator’s policy on ARA communication devices.
8. Emergency phones are different than the communication devices for ARA’s. These phones dial 911. Review with UW Safety and UW Police and Security as to where these may be required. Each phone needs to have a unique phone line and likely needs a power supply. Currently the standard product for this type of phone is Code Blue. Exterior phones (post mounted outdoors or those in parking structures) need to be capable of withstanding severe cold.

27 05 53. Identification for Communications

1. Please refer to the UW Division of Information Technology (DoIT) Infrastructure Labeling Standards for voice/data jack labeling: UW Division of Information Technology (DoIT) Infrastructure Labelling Standards.

27 10 00. Structured Cabling

27 11 00. Communications Equipment Room Fittings

27 11 05. UW Network Telecommunications Room Standards

1. For new UW-Madison buildings, major remodeling, and renovation projects, please refer to the UW standard telecommunication room specifications, i.e. 27.11.05.04.

2. For existing buildings, upgrade existing telecommunications rooms to conform as closely as possible to the standards established for new buildings.

3. Background:

3.1. At UW-Madison, buildings are designed using the structured cabling method. Telecommunication rooms are used as cross-connect facilities to:

 3.1.2. Cross-connect inside plant riser cable pairs to horizontal cable pairs.

 3.1.3. Terminate communication cables (fiber, copper, coaxial and special purpose).

 3.1.4. To house active electronic equipment such as campus network switches and routers which are mounted in data racks, key systems and ISDN racks which are typically mounted on plywood backboard or wall mounted, and alarms and security related equipment. These rooms are typically secured via high security keyway (Primus) and preferably a card reader (campus standard Andover.)

 3.1.5. Environmental sensor controls or building automation systems may be co-located in the telecom rooms or may be located elsewhere at the direction of the UW Physical Plant. If both network and building automation system equipment is co-located, both DoIT and Physical Plant must be consulted in the design and the size of the room must be adequate to support both functions.

 3.1.6. Audio system controls and campus clock synchronization electronics also need space, but are to be located outside of the above referenced equipment rooms.
4. Standards:

4.1. Size of Rooms: UW Division of Information Technology (DoIT) Equipment Room and Telecommunications Room Minimal Configurations. A formula that is used to compute telecommunication room size is: Nationally, a standard work area is defined as 10 square meters. The formula to calculate the telecommunications room size is: 0.07 square meters times the number of 10 square meter work areas. For a floor with 200 work areas the room size would be 14 square meters. On campus we specify room sizes of 180 square feet for a new or renovated building. For the main telecommunications room, the minimum size would be 180 square feet, but the size may be larger depending on the size of the building and the role the building assumes in the campus network topology. For instance, if a main telecommunication room serves as a supernode or node, then more space will be required for additional network equipment racks. (See Division 27 Detail 1 at the end of this section for UW Division of Information Technology (DoIT) Equipment Room and Telecommunications Room Minimal Configurations.)

4.2. Geographic: Locations within a building should be:

4.2.1. Vertically stacked with access directly from corridor, not accessible via another room.

4.2.2. Have sufficient telecommunication rooms to meet the horizontal cable distance limitations.

4.2.3. Easily accessible to cable pathways (internal and external to Telecom Room)

4.2.4. Conveniently located for the delivery and/or removal of equipment

4.2.5. Avoid areas of electromagnetic interference

4.2.6. Not be located near or under areas subject to water or steam infiltration or excessive heat such as mechanical, kitchens, shower, or toilet rooms.

4.2.7. Not be located in a corrosive atmosphere

4.3. Locating Storage in Telecommunication Rooms:

4.3.1. For new buildings and/or significant renovations, the telecommunication rooms shall be designed for this single purpose. There is to be no sharing with other facilities such as server rooms, building maintenance/custodial, and electrical rooms.

4.3.2. For existing telecommunication rooms that are to be upgraded to this standard, every effort will be made to eliminate sharing. If this is not physically possible, the telecommunications portion of the room should be segregated by means of a secured physical barrier such as a wire cage or partition. All requirements as stated shall be applied.

4.4. The following items shall never be stored in telecommunication rooms:

4.4.1. Cleaning chemicals and cleaning equipment
4.4.2. Office and computer supplies, especially toner and printer paper
4.4.3. Grounds keeping chemicals and equipment
4.4.4. Petroleum or other fuels
4.4.5. Hazardous materials such as asbestos

4.5. **Telecommunications Room Arrangements**:

4.5.1. A telecommunications room must include sufficient space for wall mounted blocks and racks with a minimum of 42” clearance in front and 72” clearance from front of rack to back wall or nearest obstruction and 36” side clearance on one side of the rack for rear access by maintenance technicians.

4.6. **Electrical Power**:

4.6.1. The telecom rooms shall be fed by dedicated power. The equipment shall be on a feeder separate from the feeder for the room’s lights, HVAC, and other utilities.

4.6.2. Individual branch circuits to large telecommunication electronics equipment shall be provided.

4.6.3. Power conditioning and backup power shall be provided only where required. The building occupants can request to place the network equipment on uninterruptible power supplies or at the discretion of DoIT, place these racks on the building’s emergency generator. In this case, commercial power must be provided in addition to the emergency power connections.

4.6.4. A building grounding and bonding system tying together all of the telecommunication rooms to the building ground shall be installed.

5. **HVAC/Plumbing**:

5.1. The room temperature should be in the range of 64 to 75 degrees Fahrenheit. If this range can be maintained by the incorporation of adequate ventilation means, then mechanical cooling is not required. If this temperature range cannot be maintained by ventilation alone, then mechanical cooling will be required. A 20% growth factor for cooling/ventilation shall be included in the design.

5.2. The relative humidity shall range from 15% to 55% adjusted to the outside temperature.

5.3. The heat dissipation per rack shall range from 750 to 5000 BTU. The heat dissipation of the uninterruptible power supply(s) shall also be calculated.

5.4. If mechanical cooling equipment is installed, it is desired they be located remotely. If they must be installed within the room, they shall be installed on the wall at 4’-0” AFF or less, with adequate distance from the voice wall field to remove the chance for condensation.
5.5. All piping and ductwork that do not serve the telecommunications room shall be routed such that they do not pass through or over the room. Likewise, fittings and/or valves shall not be located over or adjacent to racks and the voice wall field.

6. Room Infrastructure Characteristics:

6.1. Walls:

6.1.1. Paint with two coats of light colored paint.

6.1.2. Include ¾” plywood installed onto which hardware shall be mounted. The plywood can either be fire retardant or painted with two coats of fire retardant paint.

6.2. Floor:

6.2.1. Has a smooth surface that does not raise dust or produce static electricity. Sealed concrete or VCT are acceptable.

6.2.2. No floor drains are permitted in telecommunication rooms. If the space is below grade, other accommodations shall be made to ensure the room is not subject to moisture or water.

6.2.3. Has distributed floor load rating of 4.8 kPa (100 lbf/ft^2).

6.2.4. Has a concentrated load rating up to 12.0 kPa (250 lbf/ft^2).

6.3. Ceiling:

6.3.1. Height – at least 8’- 6”.

6.3.2. No protrusions that will preclude a minimum clear height of 8’ – 0”.

6.3.3. Painted in a light color with non-dust producing paint.

6.3.4. No ceilings of any type shall be installed. Leave the area exposed to structure.

6.4. Doors/Security:

6.4.1. At least 3’ wide x 6’-8” high with sweeps to keep dust out.

6.4.2. A double door is recommended for large equipment rooms 6’ wide x 7’- 6” high.

6.4.3. Doors shall be secured by the access control system and a high security keyway (Primus.)

6.4.4. Access is limited to DoIT certified authorized agents and a restricted set of Physical Plant personnel (e.g. electricians).

6.4.5. Video surveillance cameras may also be installed to cover key telecommunication rooms.
6.5. **Fire Protection:**

6.5.1. If dry sprinklers are required by code, protect the sprinkler head to reduce the possibility that the head could accidentally discharge.

6.5.2. Fire stop all room penetrations (e.g. cables pathways, trays, conduits, slots) as required by code and DFD specifications.

6.6. **Lighting:**

6.6.1. Adequate and uniform lighting measuring 50 foot candles at 3’ above finished floor (AFF), especially at the front and back of racks.

6.6.2. Emergency lighting is required within the room.

6.7. **Equipment Racks:**

6.7.1. For main telecommunication room, provide at least three which are 7'-0’ high by 19” racks. More may be required if the room is also a supernode or node.

6.7.2. All racks shall include 6” wide, double sided wire managers on both sides of the rack.

6.7.3. Two double duplex receptacles (1 on bus A and 1 on bus B) shall be installed on the rear of each rack, at the bottom. DoIT shall provide a mounting bracket.

6.7.4. Unless a raised flooring is installed, all jumpers and cabling will be fed to the racks from overhead installed cable trays/pathways.

6.8. **Telecommunication Blocks:**

6.8.1. Telecommunication blocks compatible with the type of telecommunications cable to be installed, shall be securely mounted on the plywood backboard.

27 16 00. **Communications Connecting Cords, Devices and Adapters**

2. Cross-connect inside plant riser cable pairs to horizontal cable pairs.

3. To house active electronic equipment such as campus network and local area network (LAN) hubs/servers/routers, key system, ISDN racks, alarms and security equipment, environmental sensor controls, audio system controls and campus clock synchronization electronics.

4. To terminate telecommunication cables (fiber, copper, coaxial and special purpose)

BICSI Telecommunications Distribution Methods Manual (Latest revision) shall be used as a reference in addition to the UW-Madison guidelines noted within.
27 50 00. Distributed Communications and Monitoring Systems

27 53 00. Distributed Systems

27 53 13. Clock Systems

1. A central building clock system, with very few exceptions, should be included in all building projects. Use synchronizing GPS broadcast signals for new buildings not currently on the campus clock system.

2. All buildings shall have stand-alone GPS 120 volt clock systems.

3. All instructional areas shall have a soft tone classroom bell system.

4. Provide digitally operated clocks in appropriate public spaces, classrooms, lecture halls, student spaces, conference rooms, and laboratories and other areas at user’s request. Number size should be selected based on the distance and view angle. Clocks in corridors should be double faced and mounted on a stem perpendicular to the wall. The style of clocks can be determined by designers as long as they are part of a stand-alone GPS system that utilizes 120 volt clocks.
UW Madison Voice & Data Jacks

Several different types of voice and data jacks with different types of labeling schemes are installed on the UW Madison campus. The intent of this document is to provide standards for the installation and labeling of these jacks to promote consistency and avoid confusion.

New construction or large remodeling projects:
Voice jacks – Terminate and label as diagrammed on page 2
Data jacks – Terminate and label as diagrammed on page 3

Small remodeling projects where an existing ER (MDF) or TR (IDF) will be used:
Follow the wire termination and labeling schemes currently being used in that MDF or IDF (see appropriate figure). EXCEPT: If there are currently both voice and data USOC jacks in an ER or TR AND more than half of the current jacks will be replaced, then use:
Voice jacks – Terminate on new Cat 6 110 blocks and label as diagrammed on page 2
Data jacks – Terminate on a new Cat 6 patch panel and label as diagrammed on page 3

Standard jack label (example):
Example = B150E - TA02 or B150E - DA012
B150E: represents the Telecommunication Room
T: represents Voice jack, D: represents a Data jack
A: represents 568A termination on the jack
012: represents a sequential number for the jack. The voice and data jacks in each telecom room shall start with 001.

NOTE: If there are questions regarding the type of termination or labeling that should be used, dial 608.262.7474 to request a consultation. A technician or engineer will meet with the telecom consultant or installer. Any re-work required by the installer, because they failed to get clarification, will be the responsibility of the installing vendor.

Voice Labels

Terminate on a 110 Block / patch pane

Rank is the room number where the communication jack is located.

IDF is the communication room where the patch panel or 110 block is located.

The "T" on the cable indicates a voice cable. An "A" after the "T" indicates the jack is terminated 568A.

The three digit numeral is a sequential number that starts with "1" in each communications room.

110 Blocks mounted on plywood back board painted with fire retardant paint
Data Labels

Terminates on a 110 Block or switch panel.

First is the room number where the communication jack is located.

110 is the 110 Block or switch panel.

The "D" on the cable indicates a data jack. An "A" after the "D" indicates an analog jack.

The three digit numeral is a sequential number that starts with "11" in each communications room.

Voice and Data Jack Labels at Desktop

AT&T USOC U/D Jack

USOC Wired Voice / 5E85 Data Jack (existing infrastructure in place)

SSBA U/D Jack (down-located)

568B U/D Jack with 52.5 Multi-mode Fiber (fiber available)
UW Cable Color Code

• Non-Plenum Cable
 • Voice White
 • Data Blue

• Plenum Cable
 • Voice Purple
 • Data Pink

UW Jack Color Code

Telephone

Data - Room to IDF/MDF

Data - Special applications
 Jacks not going back to an IDF/MDF
Video Jack Labels

Coaxial Video Jack Labels:

B100-V001 B100-V007
B100-V002 B100-V008
B100-V003 B100-V009
B100-V004 B100-V010
B100-V005 B100-V011
B100-V006 B100-V012

NOTE: The above shows an example of a twelve jack installation; an ER/TR can have any number of jacks. There shall be no duplicate jack labels in any building.

Fiber Jack Labels

Single Mode Fiber Jack Label

B10-01 SM001 B10-01 SM002 B10-01 SM003 B10-01 SM004 B10-01 SM005 B10-01 SM006
B10-01 SM007 B10-01 SM008 B10-01 SM009 B10-01 SM010 B10-01 SM011 B10-01 SM012

62.5 micron Multi Mode Fiber Jack Label

B10-02 SM001 B10-02 SM002 B10-02 SM003 B10-02 SM004 B10-02 SM005 B10-02 SM006
B10-02 SM007 B10-02 SM008 B10-02 SM009 B10-02 SM010 B10-02 SM011 B10-02 SM012

50 micron Multi Mode Fiber Jack Label

B10-03 MM001 B10-03 MM002 B10-03 MM003 B10-03 MM004 B10-03 MM005 B10-03 MM006
B10-03 MM007 B10-03 MM008 B10-03 MM009 B10-03 MM010 B10-03 MM011 B10-03 MM012

NOTE: Terminate outside plant fiber in a box separate from the inside plant fiber whenever possible. Single Mode and Multi Mode fiber should share sequential numbering. If 62.5 micron and 50 micron fibers are terminated in the same ER/TR, then these shall also share sequential numbering.
Fiber Cabinet Labels

Outside Fiber Box Label

<table>
<thead>
<tr>
<th>BUILDING NO. ####</th>
<th>NNN</th>
<th>ROOM</th>
<th></th>
<th>MDF</th>
<th>CAB##</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO ####</td>
<td>BLDNAME</td>
<td>CAB</td>
<td>GA</td>
<td>FF####</td>
<td></td>
</tr>
</tbody>
</table>

Inside Fiber Box Label

NOTE: Fiber cabinet labels are generated by DoIT Network Field Services. Please call 608.262.7474 to request a fiber cabinet label to be generated. Outside plant fiber cable numbers are assigned and tracked by DoIT Network Infrastructure Engineers; please contact Al Sauer (608.263.7735).

Inside Plant Fiber Optic Cable Labels

Example:

0155/B150E/Cabinet 1/Strands 1 to 12/62.5 micron/B116/Cabinet 4
Division 27 Detail 2

UW-Madison, Division of Information Technology (DoIT) – ER and TR Minimal Configurations –

Equipment Room (ER) Minimal Configuration
- Rack = 19 inch, 2-post
- Minimum of 3 racks required
- Vertical Cable Manager = 6 inches wide, double sided
- Rack w/2 Vertical Cable Managers = 33°w
- Patch Panels = 48 port (2RU)
- 240 max ports per rack
- Rack front faces Voice Wall field
- Minimal Clearances = 42 inches (between rack front and wall field/nearset obstruction); 72 inches (rack front to nearest wall/orbitation behind); 4 inches (one side); 36 inches (one side)
- Secure top of rack row at both ends (minimally) for stability
- Field verify with DoIT Network Infrastructure before installing racks and overhead cable ladder rack
- 36 inch door with swing into the corridor

Telecommunications Room (TR) Minimal Configuration
- Rack = 19 inch, 2-post
- Minimum of 2 racks required
- Vertical Cable Manager = 6 inches wide, double sided
- Rack w/2 Vertical Cable Managers = 33°w
- Patch Panels = 48 port (2RU)
- 240 max ports per rack
- Rack front faces Voice Wall field
- Minimal Clearances = 42 inches (between rack front and wall field/nearset obstruction); 72 inches (rack front to nearest wall/orbitation behind); 4 inches (one side); 36 inches (one side)
- Secure top of rack row at both ends (minimally) for stability
- Field verify with DoIT Network Infrastructure before installing racks and overhead cable ladder rack
- 36 inch door with swing into the corridor
UW-Madison, Division of Information Technology (DoIT) – ER and TR Minimal Configurations –

Co-Shared Telecommunications Room (TR) with Enclosure Cabinet Minimal Configuration

- Enclosure = 27.3"w x 30"d x 24-72"h (maximum) with 19"w mounting channels
- Enclosure (cabinet) component dimensions =
 A (Back) = 27.3"w x .5"d
 B (Body) = 27.3"w x 24.2"d
 C (Front) = 27.3"w x .8"d
- Minimal Clearances:
 30" each side to nearest wall/obstruction
 42" rack front to nearest wall/obstruction
- Enclosure Body (B) hinges right or left, and opens 180 degrees (shown as dashed lines)
- Internal integrated Vertical Cable Managers
- Interior Light Kit and Fan Kit
- Patch Panels = 48 port (2RU)
- 48 – 384 max ports (4 – 8 patch panels)
- Field verify with DoIT Network Infrastructure before installing enclosure and overhead cable ladder rack